Группа ученых из США и Франции описала ранее неизвестный механизм защиты клеток эукариот от вирусов на основе нуклеазы Drosha.
Геном РНК-вирусов, например гриппа и Эбола, состоит только из РНК, как правило, расположенной в капсиде (белковой оболочке). Такое строение позволяет инфекционным агентам поражать более широкий круг клеток, включая те, в которых не происходит синтез ДНК (эритроциты). Современное разнообразие РНК-вирусов — выделяется 13 семейств — во многом определяется наличием у эукариот внутриклеточных структур. До сих пор считалось, что клетки используют два механизма защиты: эволюционно более раннюю интерференцию вирусов и интерференовую сигнализацию, которая характерна для позвоночных.
Интерференция заключается в невосприимчивости инфицированной клетки ко вторичному заражению. В случае РНК-вирусов клетка узнает цепочку чужеродных структур РНК и активирует молекулярные машины для утилизации аналогов, чем блокирует дополнительное распространение патогена. Интерфероны, в свою очередь, представляют собой группу белков, которые клетка-хозяин выделяет в ответ на поступление в организм инфекции. Выработка интерферонов препятствует размножению агента за счет стимуляции иммунной системы (натуральных киллеров и Т-лимфоцитов) и подавления вирусных белков в соседних клетках.
В новой работе специалисты из Медицинского центра Маунт-Синай, Мэрилендского университета в Колледж-Парке и других научных учреждений описали ранее неизвестный механизм защиты эукариотических клеток. Он основан на эндонуклеазах Drosha из семейства рибонуклеаз III (RNase III) класса 2, специфически разрезающих двухцепочечную РНК. Наряду с нуклеазой Dicer (класс 3) эти белки играют важную роль в разрушении и созревании клеточных РНК эукариот: так, Drosha обеспечивает формирование рибосомальных и микроРНК — последние участвуют в РНК-интерференции вирусов.
Наблюдения показали, что в ответ на заражение нуклеазы Drosha могут высвобождаться из ядра клетки и распознавать чужеродные РНК со шпильками, играя роль зажима. Это нарушает работу РНК-полимераз, необходимых для размножения вирусов с одноцепочечной (+) РНК («+» указывает на группу патогенов, РНК которых представляет кодирующая цепь). При этом нокаут гена, кодирующего Drosha, резко ослабил реакцию клеток на чужеродный агент и ускорил темпы его репликации. Так, тенденция наблюдалась для вируса Синдбис — возбудителя лихорадки, которая сопровождается сыпью и болями в суставах.
Кроме того, авторы пришли к выводу, что аналогичный механизм происходит в клетках рыб, членистоногих и растений, вероятно, являясь сравнительно древним. Стоит отметить, что его элементы встречаются и в других системах противовирусной защиты, включая CRISPR. По мнению ученых, первоначально Drosha позволяли работать только с РНК хозяйских клеток, но способность распознавать подобные структуры расширила функции этих белков.
Статья опубликована в журнале Nature.