Давно не секрет, что судьба развивающейся клетки зависит не только от химических сигналов, воспринимаемые ею извне, от других клеток, но и от чисто механических стимулов. Например, от формы, каковую она вынуждена принять, или от характера поверхности, на которой клетка живёт и делится. Удалось даже обнаружить белки-регуляторы транскрипции, от которых зависит внутриклеточная передача и восприятие сигнала о характере поверхности.
При этом, как оказалось, свойства поверхности действуют на клетку не только тогда, когда она на ней находится, но и потом, когда клетка уже сошла с «родной почвы» и свойства поверхности под ней изменились. Обнаружили это исследователи из Колорадского университета в Боулдере (США), описавшие своё открытие в журнале Nature Materials.
Кристи Энсет (Kristi Anseth) и её коллеги выращивали стволовые соединительнотканные клетки человека сначала на жёстком полистирене, а потом переносили их на мягкий гидрогель. Оказалось, что чем дольше клетки росли на жёстком, тем больше в них было транскрипционного фактора RUNX2, который появляется перед тем, как клетки превращаются в костные остеобласты. Дальнейшие эксперименты показали, что чем дольше клетки росли на жёсткой поверхности, тем выше была вероятность, что они в итоге превратятся в клетки кости, а не в клетки жировой ткани.
То есть на судьбу клеток влияла их история — то время, что они провели на предыдущей поверхности.
Чтобы убедиться, что дело тут не в самом переносе клеток с места на место, а именно в свойствах поверхности, учёные использовали особый гидрогель, который под действием ультрафиолета менял жёсткость. В этом случае клетки уже не нужно было снимать с одной поверхности и переносить на другую, достаточно было лишь посветить на гидрогель. И новые результаты полностью подтвердили прежние: если клетки росли на жёстком субстрате один день, «костный» транскрипционный фактор RUNX2 после перехода на мягкое дезактивировался и уходил из ядра в цитоплазму. Если же клетки культивировались на жёстком десять дней, то RUNX2 оставался в ядре и выполнял там свою работу на протяжении ещё десяти дней с того момента, когда клетки оказывались на мягком субстрате.
Примерно так же ведёт себя другой транскрипционный фактор — YAP. Эти белки можно назвать хранителями механической памяти клетки: ведь далеко не всегда любое изменение в среде должно приводить к изменениям в судьбе клетки, иногда требуется проявить твёрдость и идти намеченным путём, не обращая внимания на окружающие перемены. Для этого как раз и служат такие вот транскрипционные факторы, поддерживающие клетку на выбранном пути развития в соответствии с её личной историей.
Правда, пока остаётся непонятным, что заставляет регуляторные белки, ведающие клеточной дифференцировкой, оставаться или не оставаться в ядре согласно с биографией клетки. Почему тот же RUNX2 продолжает вести клетку по остеобластному пути развития, хотя поверхность под ней уже давно сменилась с жёсткой на мягкую? Что за молекулярные механизмы здесь подключаются, ещё только предстоит выяснить, хотя авторы работы допускают, что срабатывают некие эпигенетические регуляторы, которые, как известно, тоже могут хранить память о недавних воздействиях среды.
Подготовлено по материалам The Scientist. Изображение на заставке принадлежит Shutterstock.