Пятница, 28 ноября 2025
  • Главная
  • Новости
    • Новости медицины и фармации
    • Пресс-релизы
    • Добавить новость/пресс-релиз
  • Документы
    • Госреестр ЛС
    • Госреестр предельных отпускных цен
    • Нормативная документация
      • Общие положения
      • Управление в сфере здравоохранения
      • Медицинское страхование
      • Медицинские учреждения
      • Медицинские и фармацевтические работники
      • Бухгалтерский учет и отчетность
      • Медицинская документация Учет и отчетность
      • Обеспечение населения лекарственными средствами и изделиями медицинского назначения
      • Медицинская деятельность
      • Санитарно-эпидемиологическое благополучие населения
      • Ветеринария
    • Госреестр медизделий
    • Реестр разрешений на КИ медизделий
    • Реестр уведомлений о деятельности в обращении медизделий
    • Разрешения на ввоз медизделий
    • Изъятие ЛС
    • МКБ-10
  • Магазин
    • Медицина
    • Фармация
    • Биология, биохимия
    • Химия
  • Контакты
  • Вход
Recipe.Ru
  • Главная
  • Новости
    • Новости медицины и фармации
    • Пресс-релизы
    • Добавить новость/пресс-релиз
  • Документы
    • Госреестр ЛС
    • Госреестр предельных отпускных цен
    • Нормативная документация
      • Общие положения
      • Управление в сфере здравоохранения
      • Медицинское страхование
      • Медицинские учреждения
      • Медицинские и фармацевтические работники
      • Бухгалтерский учет и отчетность
      • Медицинская документация Учет и отчетность
      • Обеспечение населения лекарственными средствами и изделиями медицинского назначения
      • Медицинская деятельность
      • Санитарно-эпидемиологическое благополучие населения
      • Ветеринария
    • Госреестр медизделий
    • Реестр разрешений на КИ медизделий
    • Реестр уведомлений о деятельности в обращении медизделий
    • Разрешения на ввоз медизделий
    • Изъятие ЛС
    • МКБ-10
  • Магазин
    • Медицина
    • Фармация
    • Биология, биохимия
    • Химия
  • Контакты
Корзина / 0 ₽

Корзина пуста.

Нет результата
Просмотреть все результаты
Recipe.Ru
  • Главная
  • Новости
    • Новости медицины и фармации
    • Пресс-релизы
    • Добавить новость/пресс-релиз
  • Документы
    • Госреестр ЛС
    • Госреестр предельных отпускных цен
    • Нормативная документация
      • Общие положения
      • Управление в сфере здравоохранения
      • Медицинское страхование
      • Медицинские учреждения
      • Медицинские и фармацевтические работники
      • Бухгалтерский учет и отчетность
      • Медицинская документация Учет и отчетность
      • Обеспечение населения лекарственными средствами и изделиями медицинского назначения
      • Медицинская деятельность
      • Санитарно-эпидемиологическое благополучие населения
      • Ветеринария
    • Госреестр медизделий
    • Реестр разрешений на КИ медизделий
    • Реестр уведомлений о деятельности в обращении медизделий
    • Разрешения на ввоз медизделий
    • Изъятие ЛС
    • МКБ-10
  • Магазин
    • Медицина
    • Фармация
    • Биология, биохимия
    • Химия
  • Контакты
Корзина / 0 ₽

Корзина пуста.

Нет результата
Просмотреть все результаты
Recipe.Ru
Нет результата
Просмотреть все результаты
Главная Новости Новости медицины и фармации

ИИ научился предсказывать возникновение болезни Альцгеймера из легкого когнитивного расстройства

29.04.2017
в Новости медицины и фармации
ИИ научился предсказывать возникновение болезни Альцгеймера из легкого когнитивного расстройства

Сегодня болезнь Альцгеймера — одно из самых коварных заболеваний, её возникновение очень сложно (и дорого) предугадать. И хотя уже развившуюся болезнь остановить нельзя, есть свидетельства того, что выявление на ранней стадии помогает замедлить или остановить болезнь Альцгеймера и деградацию мозга. Поэтому поиск надежного способа определить подверженность риску развития заболевания занимает умы исследователей.

По мере старения человеческого организма когнитивные нарушения неизбежны. С возрастом люди становятся более забывчивыми, чаще теряют ход мыслей и затрудняются принимать решения или выполнять задачи, которые раньше не вызывали трудностей. Врачи называют это мягким когнитивным нарушением. Оно затрагивает большинство людей, когда они становятся старше.

У многих людей с легкими когнитивными нарушениями развивается более тяжелая форма — болезнь Альцгеймера. Человек теряет словарный запас, часто использует неправильные замены слов, перестает признавать близких родственников, теряет базовые навыки самостоятельного ухода за собой и в конечном итоге становится полностью зависим от других людей, которые помогают ему. Большая часть людей с таким диагнозом умирает в течение нескольких лет после обнаружения болезни Альцгеймера.

Интересно то, что такой сценарий ждет не всех людей с легкими когнитивными расстройствами. Со временем состояние пациента может не ухудшаться, а в некоторых случаях даже улучшаться. Поэтому врачи хотят найти способы выявить тех, у кого с большей вероятностью разовьется болезнь Альцгеймера.

Южнокорейские ученые предложили использовать для этой цели глубинное обучение. Технология, которую они разработали, может точно определить людей, у которых болезнь Альцгеймера может развиться в ближайшие три года.

Глубокая нейронная сеть учится распознавать уникальные следы болезни на снимках позитронно-эмиссионной томографии мозга (ПЭТ). Известно, что болезнь Альцгеймера характеризуется нежелательным ростом белковых комков, называемых амилоидными бляшками, и медленным метаболизмом мозга, который измеряется скоростью того, как мозг использует глюкозу.

Определенные типы ПЭТ-сканирования могут выявлять признаки обоих этих состояний, и потому их можно использовать для выявления у людей умеренных когнитивных нарушений, которые в конечном счете приведут к развитию болезни Альцгеймера.

В теории звучит весьма обнадеживающе, но на практике интерпретировать получающиеся изображения достаточно трудно. Исследователи обнаружили один-два ярких маркера, которые могут найти специально обученные люди, но этот метод требует много времени и не застрахован от ошибок. Поэтому корейские ученые решили заменить людей глубинной нейронной сетью.

В последние годы исследователи болезни Альцгеймера во всем мире создают базу данных изображений головного мозга пациентов с болезнью Альцгеймера и без. И южнокорейские коллеги воспользовались этим датасетом, чтобы обучить сверточную нейронную сеть распознавать разницу между ними.
image
(А) — Архитектура сверточной нейронной сети применяется к двум изображениям ПЭТ, сделанных при помощи биологического аналога глюкозы — фтордезоксиглюкозы и флорбетапира — веществ, вводимых пациенту для диагностики болезни Альцгеймера. Каждый слой, функция могут быть извлечены с помощью трехмерной функции свертки и активации (ReLU). Многослойные свертки дают одномерный выход, а последний слой имеет два узла, которые соответствуют болезни Альцгеймера (AD) и нормальному состоянию мозга (NC).

(B) — Глубинная нейронная сеть была обучена по данным ПЭТ от здоровых и больных пациентов. Исследователи использовали десятикратную перекрестную проверку. После обучения ИИ непосредственно использовали для классификации между преобразующимся в болезнь или не преобразующимся мягким когнитивным нарушением (MCI). Исследователи провели оценку точности прогноза для пациентов с нарушением, которое может привести к болезни. Кроме того, ученые также выполнили анализ рабочей характеристики приемника (ROC).

Набор данных состоял из изображений мозга 182 человек в возрасте 70 лет со здоровым мозгом и 139 снимков мозга людей примерно того же возраста, у которых был диагностирован Альцгеймер. В результате ИИ смог распознать разницу между здоровым и больным мозгом с точностью 90%.

Кроме того, исследователи использовали свою машину для анализа другого набора данных, который состоял из сканов мозга 181 человека в возрасте 70 лет с мягким когнитивным расстройством, 79 из которых подверглись развитию болезни Альцгеймера в течение трех лет. Задача, поставленная перед учеными, заключалась в том, чтобы определить этих наиболее восприимчивых к ухудшению состояния людей.

Согласно результатам эксперимента, ИИ выявил тех, кто подвержен риску развития болезни Альцгеймера с точностью 81%. Этот результат значительно выше того, который выдают врачи, визуально анализирующие снимки.

В более общем плане техника корейских ученых является лишь одним из примером все более широкого использования глубинного обучения и машинного зрения в медицинской диагностике. Имеющиеся данные свидетельствуют о том, что машины могут определять сложные условия раньше и точнее, чем люди.

ИИ научился предсказывать возникновение болезни Альцгеймера из легкого когнитивного расстройства

Сегодня болезнь Альцгеймера — одно из самых коварных заболеваний, её возникновение очень сложно (и дорого) предугадать. И хотя уже развившуюся болезнь остановить нельзя, есть свидетельства того, что выявление на ранней стадии помогает замедлить или остановить болезнь Альцгеймера и деградацию мозга. Поэтому поиск надежного способа определить подверженность риску развития заболевания занимает умы исследователей.

По мере старения человеческого организма когнитивные нарушения неизбежны. С возрастом люди становятся более забывчивыми, чаще теряют ход мыслей и затрудняются принимать решения или выполнять задачи, которые раньше не вызывали трудностей. Врачи называют это мягким когнитивным нарушением. Оно затрагивает большинство людей, когда они становятся старше.

У многих людей с легкими когнитивными нарушениями развивается более тяжелая форма — болезнь Альцгеймера. Человек теряет словарный запас, часто использует неправильные замены слов, перестает признавать близких родственников, теряет базовые навыки самостоятельного ухода за собой и в конечном итоге становится полностью зависим от других людей, которые помогают ему. Большая часть людей с таким диагнозом умирает в течение нескольких лет после обнаружения болезни Альцгеймера.

Интересно то, что такой сценарий ждет не всех людей с легкими когнитивными расстройствами. Со временем состояние пациента может не ухудшаться, а в некоторых случаях даже улучшаться. Поэтому врачи хотят найти способы выявить тех, у кого с большей вероятностью разовьется болезнь Альцгеймера.

Южнокорейские ученые предложили использовать для этой цели глубинное обучение. Технология, которую они разработали, может точно определить людей, у которых болезнь Альцгеймера может развиться в ближайшие три года.

Глубокая нейронная сеть учится распознавать уникальные следы болезни на снимках позитронно-эмиссионной томографии мозга (ПЭТ). Известно, что болезнь Альцгеймера характеризуется нежелательным ростом белковых комков, называемых амилоидными бляшками, и медленным метаболизмом мозга, который измеряется скоростью того, как мозг использует глюкозу.

Определенные типы ПЭТ-сканирования могут выявлять признаки обоих этих состояний, и потому их можно использовать для выявления у людей умеренных когнитивных нарушений, которые в конечном счете приведут к развитию болезни Альцгеймера.

В теории звучит весьма обнадеживающе, но на практике интерпретировать получающиеся изображения достаточно трудно. Исследователи обнаружили один-два ярких маркера, которые могут найти специально обученные люди, но этот метод требует много времени и не застрахован от ошибок. Поэтому корейские ученые решили заменить людей глубинной нейронной сетью.

В последние годы исследователи болезни Альцгеймера во всем мире создают базу данных изображений головного мозга пациентов с болезнью Альцгеймера и без. И южнокорейские коллеги воспользовались этим датасетом, чтобы обучить сверточную нейронную сеть распознавать разницу между ними.
image
(А) — Архитектура сверточной нейронной сети применяется к двум изображениям ПЭТ, сделанных при помощи биологического аналога глюкозы — фтордезоксиглюкозы и флорбетапира — веществ, вводимых пациенту для диагностики болезни Альцгеймера. Каждый слой, функция могут быть извлечены с помощью трехмерной функции свертки и активации (ReLU). Многослойные свертки дают одномерный выход, а последний слой имеет два узла, которые соответствуют болезни Альцгеймера (AD) и нормальному состоянию мозга (NC).

(B) — Глубинная нейронная сеть была обучена по данным ПЭТ от здоровых и больных пациентов. Исследователи использовали десятикратную перекрестную проверку. После обучения ИИ непосредственно использовали для классификации между преобразующимся в болезнь или не преобразующимся мягким когнитивным нарушением (MCI). Исследователи провели оценку точности прогноза для пациентов с нарушением, которое может привести к болезни. Кроме того, ученые также выполнили анализ рабочей характеристики приемника (ROC).

Набор данных состоял из изображений мозга 182 человек в возрасте 70 лет со здоровым мозгом и 139 снимков мозга людей примерно того же возраста, у которых был диагностирован Альцгеймер. В результате ИИ смог распознать разницу между здоровым и больным мозгом с точностью 90%.

Кроме того, исследователи использовали свою машину для анализа другого набора данных, который состоял из сканов мозга 181 человека в возрасте 70 лет с мягким когнитивным расстройством, 79 из которых подверглись развитию болезни Альцгеймера в течение трех лет. Задача, поставленная перед учеными, заключалась в том, чтобы определить этих наиболее восприимчивых к ухудшению состояния людей.

Согласно результатам эксперимента, ИИ выявил тех, кто подвержен риску развития болезни Альцгеймера с точностью 81%. Этот результат значительно выше того, который выдают врачи, визуально анализирующие снимки.

В более общем плане техника корейских ученых является лишь одним из примером все более широкого использования глубинного обучения и машинного зрения в медицинской диагностике. Имеющиеся данные свидетельствуют о том, что машины могут определять сложные условия раньше и точнее, чем люди.

Пред.

Три медицинских робота, таких же мягких, как люди

След.

Руководители фармпредприятий ожидают не менее пяти крупных M&A сделок

СвязанныеСообщения

Областная больница потратит 16 млн рублей на охрану врачей и другого медперсонала
В России

Областная больница потратит 16 млн рублей на охрану врачей и другого медперсонала

28.11.2025
Объем основных медицинских госзакупок за 9 месяцев составил почти 1,1 трлн
Новости медицины и фармации

Объем основных медицинских госзакупок за 9 месяцев составил почти 1,1 трлн

28.11.2025
Каждый второй россиянин выбирает частную медицину из‑за возможности быстро попасть на прием любого специалиста
Новости медицины и фармации

Каждый второй россиянин выбирает частную медицину из‑за возможности быстро попасть на прием любого специалиста

28.11.2025
След.
Руководители фармпредприятий ожидают не менее пяти крупных M&A сделок

Руководители фармпредприятий ожидают не менее пяти крупных M&A сделок

Добавить комментарий Отменить ответ

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Товары

  • Forensic and Anatomic Dissections of the Human Eye Forensic and Anatomic Dissections of the Human Eye 205 ₽
  • Grabb & Smith’s Plastic Surgery 6 Ed 2007 Grabb & Smith's Plastic Surgery 6 Ed 2007 479 ₽
  • Visual Red Book 2000 Visual Red Book 2000 205 ₽
  • Диспорт. Применение ботулинического токсина типа «А» в Диспорт. Применение ботулинического токсина типа "А" в 684 ₽

Товары

  • Kaplan and Sadock’s Comprehensive Textbook of Psychiatry 7th Edi Kaplan and Sadock's Comprehensive Textbook of Psychiatry 7th Edi 479 ₽
  • Местное обезболивание в стоматологии Местное обезболивание в стоматологии 684 ₽
  • Pharmaceutical Books 6 Pharmaceutical Books 6 342 ₽
  • Diagnostic books Diagnostic books 342 ₽
  • Pharmaceutical Books 3 Pharmaceutical Books 3 342 ₽

Метки

AstraZeneca FDA RNC Pharma Алексей Водовозов ВОЗ Вакцина Заметки врача Лекарства Минздрав Москва Подкасты Производство Роспотребнадзор ФАС вакцинация вакцинация от коронавирусной инфекции видеолекции дети исследование исследования клинические исследования книги для врачей коронавирус коронавирус 2019 коронавирус 2021 коронавирусная инфекция мероприятия новости Remedium новости медицины онкология опрос подкаст продажи разработка рак регистрация рост рынок лекарств сделка слушать подкаст онлайн статьи для врачей сша фармацевтика фармация фармрынок РФ

Свежие записи

  • Областная больница потратит 16 млн рублей на охрану врачей и другого медперсонала
  • Объем основных медицинских госзакупок за 9 месяцев составил почти 1,1 трлн
  • Каждый второй россиянин выбирает частную медицину из‑за возможности быстро попасть на прием любого специалиста
  • Пациентка московской больницы покончила жизнь самоубийством
  • Минфин предлагает утвердить перечень СЗЛС в первой половине 2026 года
  • О нас
  • Реклама
  • Политика конфиденциальности
  • Контакты

© 1999 - 2022 Recipe.Ru - фармацевтический информационный сайт.

Добро пожаловать!

Войдите в свой аккаунт ниже

Забыли пароль?

Восстановите ваш пароль

Пожалуйста, введите ваше имя пользователя или адрес электронной почты, чтобы сбросить пароль.

Вход
Нет результата
Просмотреть все результаты
  • Главная
  • Новости
    • Новости медицины и фармации
    • Пресс-релизы
    • Добавить новость/пресс-релиз
  • Документы
    • Госреестр ЛС
    • Госреестр предельных отпускных цен
    • Нормативная документация
      • Общие положения
      • Управление в сфере здравоохранения
      • Медицинское страхование
      • Медицинские учреждения
      • Медицинские и фармацевтические работники
      • Бухгалтерский учет и отчетность
      • Медицинская документация Учет и отчетность
      • Обеспечение населения лекарственными средствами и изделиями медицинского назначения
      • Медицинская деятельность
      • Санитарно-эпидемиологическое благополучие населения
      • Ветеринария
    • Госреестр медизделий
    • Реестр разрешений на КИ медизделий
    • Реестр уведомлений о деятельности в обращении медизделий
    • Разрешения на ввоз медизделий
    • Изъятие ЛС
    • МКБ-10
  • Магазин
    • Медицина
    • Фармация
    • Биология, биохимия
    • Химия
  • Контакты

© 1999 - 2022 Recipe.Ru - фармацевтический информационный сайт.

Go to mobile version