В мире каждый год проводится от 3,5 до 4 миллионов операций с использованием материалов для восстановления костей. Это второе по популярности направление после переливания крови, которое встречается в 10 раз чаще, чем пересадка других органов. В таких имплантатах используют особые наноматериалы, похожие на «губки» с мелкими дырочками. Благодаря порам они имеют огромную поверхность и уникальные свойства, которые делают их незаменимыми не только в медицине, но и экологии и химии, — они отлично фильтруют воду, ускоряют химические реакции в промышленности и даже применяются для создания сверхлегких и прочных материалов. Существующая методика создания таких наноматериалов требует больших затрат, времени и электроэнергии. Ученые Пермского Политеха нашли более быстрый и дешевый способ изготовления этих структур, который не требует дополнительных реагентов и примесей.
Нанопористые материалы отличаются от обычных тем, что в них много мелких отверстий. За счет этого они могут впитывать вещества и ускорять химические реакции. Размер пор можно настроить так, чтобы они задерживали конкретные молекулы — например, очищали воду от тяжелых металлов. При этом структура остается легкой и прочной. Один из таких наноматериалов — фосфат магния, который похож по составу на человеческую кость.
Чтобы сделать из обычного фосфата магния наноматериал, т.е. создать внутри него пористую структуру, традиционно используют метод «bottomup» или «снизу вверх». Он заключается в том, что к сурфактанту (поверхностно активное вещество) добавляют фосфат магния.
«Сурфактанты создают оболочку вокруг растущих наночастиц, отталкивая их друг от друга и не давая слиться. Они выступают как “шаблоны”, вокруг которых и формируются поры. После синтеза сурфактанты удаляют с растворителями или испаряют, оставляя только нанопористую структуру», — рассказывает Юлия Кузнецова, доцент кафедры «Химия и биотехнология» ПНИПУ, кандидат технических наук.
Все эти процессы отнимают время и лишнюю электроэнергию, которая тратится на удаление сурфактантов. Кроме того, они могут быть токсичными, а поры — получиться неоднородными. Это влияет на сорбционную емкость материала, т.е. он станет более плохим сорбентом или носителем в биомедицине. Ученые Пермского Политеха предложили другой способ, который позволит сэкономить ресурсы при получении таких структур.
«Для создания наноматериала из фосфата магния мы использовали метод “top-down” (сверху вниз). Это процесс, в ходе которого вещество приобретает пористую структуру после нагрева. Для образования наноматериала из кристаллов фосфата магния мы подобрали оптимальную температуру и время нагревания: при 90°C в течение 2 часов 40 минут. Это позволило воде, находящейся в составе фосфата магния, испариться и оставить после себя поры 5–10 нм (нанометров). В результате без дорогих и токсичных добавок удалось получить материал с большой площадью поверхности, которая выросла до сотен м²/г. Большая поверхность материала важна для его хороших сорбционных свойств и каталитических свойств», — комментирует Ирина Пермякова, доцент кафедры «Химия и биотехнология» ПНИПУ, кандидат технических наук.
Технология «top-down» почти не изучена, но превосходит «bottom-up» тем, что не требует дополнительных реагентов и многоступенчатых процессов. Благодаря этой методике размер пор можно регулировать, меняя состав исходного материала.
Исследование ученых Пермского Политеха не только доказывает возможность применения этой методики для экономичного создания наноматериалов, но и поможет удешевить системы очистки промышленных стоков, производство медицинских имплантов и создание эффективных катализаторов. Метод в дальнейшем также планируют испытать на других соединениях.
В мире каждый год проводится от 3,5 до 4 миллионов операций с использованием материалов для восстановления костей. Это второе по популярности направление после переливания крови, которое встречается в 10 раз чаще, чем пересадка других органов. В таких имплантатах используют особые наноматериалы, похожие на «губки» с мелкими дырочками. Благодаря порам они имеют огромную поверхность и уникальные свойства, которые делают их незаменимыми не только в медицине, но и экологии и химии, — они отлично фильтруют воду, ускоряют химические реакции в промышленности и даже применяются для создания сверхлегких и прочных материалов. Существующая методика создания таких наноматериалов требует больших затрат, времени и электроэнергии. Ученые Пермского Политеха нашли более быстрый и дешевый способ изготовления этих структур, который не требует дополнительных реагентов и примесей.
Нанопористые материалы отличаются от обычных тем, что в них много мелких отверстий. За счет этого они могут впитывать вещества и ускорять химические реакции. Размер пор можно настроить так, чтобы они задерживали конкретные молекулы — например, очищали воду от тяжелых металлов. При этом структура остается легкой и прочной. Один из таких наноматериалов — фосфат магния, который похож по составу на человеческую кость.
Чтобы сделать из обычного фосфата магния наноматериал, т.е. создать внутри него пористую структуру, традиционно используют метод «bottomup» или «снизу вверх». Он заключается в том, что к сурфактанту (поверхностно активное вещество) добавляют фосфат магния.
«Сурфактанты создают оболочку вокруг растущих наночастиц, отталкивая их друг от друга и не давая слиться. Они выступают как “шаблоны”, вокруг которых и формируются поры. После синтеза сурфактанты удаляют с растворителями или испаряют, оставляя только нанопористую структуру», — рассказывает Юлия Кузнецова, доцент кафедры «Химия и биотехнология» ПНИПУ, кандидат технических наук.
Все эти процессы отнимают время и лишнюю электроэнергию, которая тратится на удаление сурфактантов. Кроме того, они могут быть токсичными, а поры — получиться неоднородными. Это влияет на сорбционную емкость материала, т.е. он станет более плохим сорбентом или носителем в биомедицине. Ученые Пермского Политеха предложили другой способ, который позволит сэкономить ресурсы при получении таких структур.
«Для создания наноматериала из фосфата магния мы использовали метод “top-down” (сверху вниз). Это процесс, в ходе которого вещество приобретает пористую структуру после нагрева. Для образования наноматериала из кристаллов фосфата магния мы подобрали оптимальную температуру и время нагревания: при 90°C в течение 2 часов 40 минут. Это позволило воде, находящейся в составе фосфата магния, испариться и оставить после себя поры 5–10 нм (нанометров). В результате без дорогих и токсичных добавок удалось получить материал с большой площадью поверхности, которая выросла до сотен м²/г. Большая поверхность материала важна для его хороших сорбционных свойств и каталитических свойств», — комментирует Ирина Пермякова, доцент кафедры «Химия и биотехнология» ПНИПУ, кандидат технических наук.
Технология «top-down» почти не изучена, но превосходит «bottom-up» тем, что не требует дополнительных реагентов и многоступенчатых процессов. Благодаря этой методике размер пор можно регулировать, меняя состав исходного материала.
Исследование ученых Пермского Политеха не только доказывает возможность применения этой методики для экономичного создания наноматериалов, но и поможет удешевить системы очистки промышленных стоков, производство медицинских имплантов и создание эффективных катализаторов. Метод в дальнейшем также планируют испытать на других соединениях.