Для нормальной жизнедеятельности малярийный паразит использует клеточный цитоскелет, перемонтируя его под свои нужды. Мутантный гемоглобин, вызывающий серповидноклеточную анемию, препятствует использованию актинового цитоскелета малярийным паразитом.
Нормальные и деформированные эритроциты в крови человека с серповидноклеточной анемией (фото euthman). |
Последние 67 лет, с того самого момента, когда была открыта причина серповидноклеточной анемии, биологи и медики ломали голову над одной загадкой, связанной с этой генетической аномалией. Довольно быстро обнаружилось, что мутация, вызывающая серповидноклеточную анемию, повышает устойчивость к малярии — но невозможно было понять, как она это делает.
Если заменить в гемоглобине всего одну аминокислоту, то получающийся мутантный белок будет агрегировать, слипаться в эритроцитах. И если оба гена в клетке мутантны, то эритроцит приобретёт изогнутую форму, похожую на лунный месяц. Функционирует мутантный гемоглобин плохо: у человека появляются признаки кислородной недостаточности — развивается серповидноклеточная анемия. Однако такие мутации в гене гемоглобина присутствуют почти у 40% населения экваториальной Африки, и это не случайно: «анемичные» эритроциты каким-то образом защищают организм от малярии. Учёные из Гейдельбергского университета (Германия) в сотрудничестве с коллегами из Буркина-Фасо сравнили с помощью электронного микроскопа строение обычных эритроцитов, малярийных эритроцитов и малярийных эритроцитов с мутантным гемоглобином.
Как пишут исследователи в статье для журнала Science, им удалось выяснить причину того, почему малярийному плазмодию плохо живётся в серповидных эритроцитах. У нормальных красных кровяных клеток актиновые филаменты, элементы белкового скелета клетки, распределены под мембраной эритроцита. Эти очень короткие белковые нити позволяют одновременно поддерживать форму клетки и обеспечивают достаточную гибкость, чтобы протискиваться в крохотных и тесных капиллярах и отверстиях стенок сосудов. Но когда в клетку проникает малярийный паразит, он начинает использовать цитоскелет в своих целях. Из актиновых филаментов, протянутых под мембраной, плазмодий конструирует транспортную систему, с помощью которой отправляет наружу собственный белок адгезин. Этот адгезин, переброшенный на наружную сторону мембраны эритроцитов, делает клетки крови липкими. Эритроциты слипаются и оседают на стенках сосудов: это происходит, когда паразиту на очередном этапе жизненного цикла нужно выйти из кровотока. Процесс сопровождается множественными микрососудистыми воспалениями, характерными для малярии.
Но малярией человек болеет давно, и эволюция не стояла на месте. Оказалось, что в клетках с серповидноклеточной мутацией плазмодию трудно заставить цитоскелет работать на себя. Несмотря на все усилия плазмодия, актиновый «мост» не дотягивается до мембранных везикул с адгезином, предназначенным для транспорта наружу. При постройке актинового «моста» паразит делает из коротких актиновых филаментов длинные, и вот как раз эта дополнительная полимеризация актина невозможна в клетках с мутантным гемоглобином. Авторы работы полагают, что это связано с особенностями структурных превращений такого гемоглобина при связывании им кислорода.
Не обязательно иметь оба мутантных гена, на обеих хромосомах: даже одна копия «анемичного» гемоглобина будет портить жизнь малярийному плазмодию, а другая, нормальная копия будет давать обычный гемоглобин для нормального газообмена. Результаты учёных не только разрешают многолетнюю загадку, связанную с серповидноклеточной анемией, но и позволяют сфокусироваться на возможном уязвимом месте малярийного паразита. Если бы удалось определить, как именно плазмодий управляет цитоскелетом, и найти способ воспрепятствовать этому, можно было бы смело заявить о победе над малярией.
Подготовлено по материалам Nature News.
Для нормальной жизнедеятельности малярийный паразит использует клеточный цитоскелет, перемонтируя его под свои нужды. Мутантный гемоглобин, вызывающий серповидноклеточную анемию, препятствует использованию актинового цитоскелета малярийным паразитом.
Нормальные и деформированные эритроциты в крови человека с серповидноклеточной анемией (фото euthman). |
Последние 67 лет, с того самого момента, когда была открыта причина серповидноклеточной анемии, биологи и медики ломали голову над одной загадкой, связанной с этой генетической аномалией. Довольно быстро обнаружилось, что мутация, вызывающая серповидноклеточную анемию, повышает устойчивость к малярии — но невозможно было понять, как она это делает.
Если заменить в гемоглобине всего одну аминокислоту, то получающийся мутантный белок будет агрегировать, слипаться в эритроцитах. И если оба гена в клетке мутантны, то эритроцит приобретёт изогнутую форму, похожую на лунный месяц. Функционирует мутантный гемоглобин плохо: у человека появляются признаки кислородной недостаточности — развивается серповидноклеточная анемия. Однако такие мутации в гене гемоглобина присутствуют почти у 40% населения экваториальной Африки, и это не случайно: «анемичные» эритроциты каким-то образом защищают организм от малярии. Учёные из Гейдельбергского университета (Германия) в сотрудничестве с коллегами из Буркина-Фасо сравнили с помощью электронного микроскопа строение обычных эритроцитов, малярийных эритроцитов и малярийных эритроцитов с мутантным гемоглобином.
Как пишут исследователи в статье для журнала Science, им удалось выяснить причину того, почему малярийному плазмодию плохо живётся в серповидных эритроцитах. У нормальных красных кровяных клеток актиновые филаменты, элементы белкового скелета клетки, распределены под мембраной эритроцита. Эти очень короткие белковые нити позволяют одновременно поддерживать форму клетки и обеспечивают достаточную гибкость, чтобы протискиваться в крохотных и тесных капиллярах и отверстиях стенок сосудов. Но когда в клетку проникает малярийный паразит, он начинает использовать цитоскелет в своих целях. Из актиновых филаментов, протянутых под мембраной, плазмодий конструирует транспортную систему, с помощью которой отправляет наружу собственный белок адгезин. Этот адгезин, переброшенный на наружную сторону мембраны эритроцитов, делает клетки крови липкими. Эритроциты слипаются и оседают на стенках сосудов: это происходит, когда паразиту на очередном этапе жизненного цикла нужно выйти из кровотока. Процесс сопровождается множественными микрососудистыми воспалениями, характерными для малярии.
Но малярией человек болеет давно, и эволюция не стояла на месте. Оказалось, что в клетках с серповидноклеточной мутацией плазмодию трудно заставить цитоскелет работать на себя. Несмотря на все усилия плазмодия, актиновый «мост» не дотягивается до мембранных везикул с адгезином, предназначенным для транспорта наружу. При постройке актинового «моста» паразит делает из коротких актиновых филаментов длинные, и вот как раз эта дополнительная полимеризация актина невозможна в клетках с мутантным гемоглобином. Авторы работы полагают, что это связано с особенностями структурных превращений такого гемоглобина при связывании им кислорода.
Не обязательно иметь оба мутантных гена, на обеих хромосомах: даже одна копия «анемичного» гемоглобина будет портить жизнь малярийному плазмодию, а другая, нормальная копия будет давать обычный гемоглобин для нормального газообмена. Результаты учёных не только разрешают многолетнюю загадку, связанную с серповидноклеточной анемией, но и позволяют сфокусироваться на возможном уязвимом месте малярийного паразита. Если бы удалось определить, как именно плазмодий управляет цитоскелетом, и найти способ воспрепятствовать этому, можно было бы смело заявить о победе над малярией.
Подготовлено по материалам Nature News.